

FINAL REPORT

Contract Number: DTPH56-08-T-000011

Prepared For:United States Department of TransportationPipeline and Hazardous Materials Safety AdministrationOffice of Pipeline Safety

Project WP#339: Structural Significance of Mechanical Damage

The letter transmits the Final Report for work completed under US DOT PHMSA Other Transaction Agreement (OTA) DTPH56-08-T-000011, Structural Significance of Mechanical Damage. The project was implemented to develop a detailed experimental database on how pipelines respond when affected by mechanical damage, caused by both external interference and rock dents. This full-scale testing program produced detailed experimental data to support the validation of improved burst and fatigue strength models to assess dents interacting with secondary features - gouges, corrosion, and welds. These data are needed to support the efforts of PHMSA and the pipeline industry to ensure safe operation of pipeline systems and to promote continuous improvements and focus on public safety.

The Final Report presents the activities completed to develop a detailed database of mechanical damage defects and evaluating the impact of those defects on the structural significance of operating pipelines. These data form the basis and input for further development and validation of mechanistic models previously developed to predict the conditions that lead to immediate (burst) or delayed failure under fluctuating pressure loading. The engineering tools and empirical and mechanistic (numeric) models currently used for assessing the significance of mechanical damage with secondary features are based on a number of assumptions rather than detailed experimental data. Improvements to the models are needed to avoid overly conservative assessments, promoting unnecessary maintenance, or the lack of required maintenance that could result in unexpected failures, which represent a significant environmental and safety concern for operating pipelines.

The project included the creation and full-scale testing of Dent+Gouge and Dents/Dents with secondary features (corrosion, on welds) using modern steels and vintage steels, with the vintage steels being from former in-service pipelines. The full-scale tests were highly instrumented to capture the level of detail needed for a range of parameters that are important to the development

Final Report DTPH56-08-T-000011 Project WP#339: Structural Significance of Mechanical Damage

and validation of mechanical damage assessment models. The models that will be developed (by other efforts) should eventually be made available for pipeline integrity management.

The final report includes information and details of the testing already completed in the project, and are included in the attachments to this cover letter. It is built from information provided in the Quarterly Reports already provided during the project life and included in this final report. The following Appendix A and B summarize the final status of the Testing on Dents and Dent + Gouge research.

Electricore, PRCI, BMT Fleet Technology, GDF SUEZ appreciate the opportunity to work on this program with PHMSA. Please contact Electricore directly with any questions:

Deborah Jelen, Executive Director Electricore, Inc. 27943 Smyth Drive, Ste 105 Valencia, CA 91355 USA (661) 607-0230; jelen@electricore.org

Final Report DTPH56-08-T-000011

Project WP#339: Structural Significance of Mechanical Damage

Appendix A—Technical Details Testing on Dents¹ (Task 4)

The experimental testing for dents is being performed by BMT Fleet Technology Ltd (BMT) with support from Stress Engineering Services (SES) as a subcontractor. The original scope of work for the dent testing program consisted of the following primary activities:

- Developing a dent test sample matrix, consisting of 72 samples these samples were divided between modern steel pipe (50 samples) and vintage steel pipe (22 samples).
- Creating dent samples using two indenter sizes of 2 and 4 in. nominal diameter. Three different dent depths are being created using indenter travel of 5%, 10% and 15% of the pipe diameter (note, these values are total indentation depth; the dents rebound following removal of the indenter and are actually shallower). The 5% and 10% dent depths are for restrained dents and 15% indenter travel is being used for creating unrestrained dents. The test matrix involves a combination of plain dents, dents interacting with welds, and dents interacting with simulated corrosion.
- Creating dents in unpressurized pipe specimens
- Testing duplicate specimens for each combination of variables
- Instrumentation of half the tests (36)
- Radiography of the three representative welds

The initial test matrix is presented in the summary table below.

Condition	Restra	ained	Unrestrained				
Pipe	X52 – 24"Dia x	X70 – 24"Dia x	X52 – 24"Dia x	X70 – 24"Dia x	New Material		
_	0.312" thick	0.35" thick	0.312" thick	0.35" thick			
Plain dents	2 x 2" indenter	4 x 4" indenter	4 x 2" indenter	4 x 2" indenter	3 x 2" indenter		
24 tests	5% depth	10% depth	2 x 4" indenter	2 x 4" indenter	3 x 4" indenter		
			15% depth	15% depth	15% depth		
Dent on	2 x 2" indenter	2 x 4" indenter	3 x 2" indenter	3 x 2" indenter	4 x 2" indenter		
girth weld	5% depth	10% depth	3 x 4" indenter	3 x 4" indenter	4 x 4" indenter		
24 tests			15% depth	15% depth	15% depth		
Dent on	2 x 2" indenter						
long seam	5% depth						
2 tests							
Dent on	3 x 2" indenter	3 x 4" indenter	2 x 2" indenter	2 x 2" indenter	4 x 2" indenter		
metal loss	5% depth	10% depth	2 x 4" indenter	2 x 4" indenter	4 x 4" indenter		
22 tests			15% depth	15% depth	15% depth		

 Table 1: Initial Project Dent Test Matrix

As the project progressed and the initial testing data generated were reviewed with the research team, there were a number of adjustments proposed. These adjustments resulted in an increase in test variables (dent shape, dent size, restrained dent tests for vintage pipes, indentation under pressure), and the quality of the test data (all tests in the present program were instrumented as compared to 50% of the tests). The changes include:

¹ Includes plain dents, dents on welds, and dents with metal loss

Distribution authorized to U.S. Government Agencies only, so as to protect information not owned by the U.S. Government and protected by the recipient's "limited rights" statement, or received with the understanding that it not be routinely submitted outside the U.S. Government.

Final Report DTPH56-08-T-000011

Project WP#339: Structural Significance of Mechanical Damage

- Limiting duplicate testing and providing experimental data for a wider range of scenarios and mechanical damage conditions
- Adding shallower and blunter dents
- Increasing the range of indenter sizes from two to four
- Adding a number of tests where the indentation is carried out on pressurized pipe, compared to the tests carried out to date where all indentation is carried out at 0% pressure
- Full instrumentation of all test specimens and radiography examination of all girth welds
- Incorporating restrained dent tests on vintage pipe

The program completed 40 tests on Pipe A and B rather than the original total of 50 tests. The reduction included several of the duplicate specimens in the remaining girth weld test samples and reducing the number of samples for the dent with the metal loss portion of the test program. The total number of metal loss specimens was six. The maximum depth of the features was 20% of the wall thickness. The project reduces the total number of specimens included in the program to 62 specimens (compared to 72 tests in the original matrix).

The modified test matrix investigated a wider variety of dent geometries, including deeper unrestrained dents, shallower restrained dents, and blunter indenter sizes. It also maximizes the possible number of direct comparisons between the various dent parameters, and includes a number of dents to be made while the test pipe is under pressure. Moreover, the matrix does not include any duplicate tests. The difference in the original vintage pipe test matrix and the proposed vintage pipe test matrix is compared in the table below. The comparison of the old and the new matrix shows that the scope and the range of parameters that are being investigated have increased. The matrix has been developed with the following objectives in mind:

- The dent models can be calibrated and validated (dent shape, dent formation strains, cyclic strain range, and pressure versus strain/stress transfer functions) against a wider range of dent scenarios and therefore ensure its applicability covers the range of damage scenarios encountered by pipeline operators.
- Generate enough test data to develop suitable fatigue life trends based on dent depths, dent shapes and dent restraint condition. This will ensure that enough data and trends are available to investigate different life estimation approaches (stress life, strain life and crack growth approaches)
- Generate test data and evaluate the behavior and response of dents formed during pipe installation (zero pressure) as well as dents formed during service (dents formed under pressure).

Parameters	Original Matrix	Final Matrix
Dent Depth, Unrestrained	1	2
Dent Depth, Restrained	0	3
Dent Size	2	4
Indentation under Pressure	0	2
Instrumentation of Tests	11	21
Test on Vintage Pipe	22	22

Table 2:	Comparison of the Original and the Final Test Variables for Vinta	ge Pipe Full
	Scale Dent Testing	

 Table 3: Final Test Matrix for Vintage Pipe Material (Pipe C)

Specimen #	Pipe Material	Indenter	Indenter	Dent Depth	Dent	Interacting	Indentation	Initial Pressure	Cyclic Pressure	Weld Seam
		Diameter	Travel		Restraint	w ith	Pressure	Cycle	Range	Location
		(in)	(%)	(%)			(%SMYS)	(%SMYS)	(%SMYS)	
41	С	2	5	5.1%	R	Plain	0	100%	10%-80%	N.A.
42	С	4	10	10.1%	R	Plain	0	100%	10%-80%	N.A.
43	С	2	7.5	7.5%	R	Plain	0	100%	10%-80%	N.A.
44	С	8	7.5	7.5%	R	Plain	0	100%	10%-80%	N.A.
45	С	8	7.5	7.5%	R	Plain	40%	100%	10%-80%	N.A.
46	С	12	5	5.1%	R	Plain	0	100%	10%-80%	N.A.
47	С	8	7.5	7.5%	R	Plain	80%	100%	10%-80%	N.A.
48	С	2	15	~2	U	Plain	0	100%	10%-80%	N.A.
49	С	2	10	10.0%	R	Plain	0	100%	10%-80%	N.A.
50	С	2	15	~2	U	Plain	40%	100%	10%-80%	N.A.
51	С	2	15	~2	U	Plain	80%	100%	10%-80%	N.A.
52	С	4	15	~2	U	Plain	0	80%	10%-80%	N.A.
53	С	12	20	~2	U	Plain	40%	80%	10%-80%	N.A.
54	С	12	15	~2	U	Plain	0	100%	10%-80%	N.A.
55	С	12	20	~2-5	U	Plain	80%	80%	10%-80%	N.A.
56	С	4	20	~2	U	Plain	0	100%	10%-80%	N.A.
57	С	12	20	~2	U	Plain	0	80%	10%-80%	N.A.
58	С	2	15	~2	U	GW	0%	100%	10%-80%	offset
59	С	12	20	~2	U	GW	0%	80%	10%-80%	c/l
60	С	2	7.5	7.5	R	GW	0%	100%	10%-80%	offset
61	С	8	7.5	7.5	R	GW	0%	100%	10%-80%	offset
62	С	12	20	~2	U	Plain	80%	100%	10%-80%	N.A.

_			Initial	_						
Spec.	Pipe	Indenter	Indenter	Dent	Interacting	Indentation	Firstl Press.	Cyclic Press.	Secondary	Cycles to
#	Mat	Diameter	Travel	Condition	with	Pressure	Cycle	Range	Feature	Failure
4		(in)	(%)		Diaia	(%5MY5)	(%SMYS)	(%SIMYS)	Location	6040
2	A	2	5	ĸ	Plain	0%	100%	10%-80%	N.A.	0948
3	B	2	10	R	Plain	0	100%	10%-80%	N.A.	6886
4	B	4	10	R	Plain	0	100%	10%-80%	N.A.	16234
5	B	4	10	R	Plain	0	80%	10%-80%	N.A.	2531
6	B	4	10	R	Plain	0	80%	10%-80%	N.A.	3359
7	A	2	15	U	Plain	0	100%	10%-80%	N.A.	21103
8	A	2	15	U	Plain	0	100%	10%-80%	N.A.	28211
9	Α	2	15	U	Plain	0	80%	10%-80%	N.A.	6825
10	А	2	15	U	Plain	0	80%	10%-80%	N.A.	9116
11	Α	4	15	U	Plain	0	100%	10%-80%	N.A.	15063
12	Α	4	15	U	Plain	0	100%	10%-80%	N.A.	27575
13	В	2	15	U	Plain	0	100%	10%-80%	N.A.	13263
14	В	2	15	U	Plain	0	100%	10%-80%	N.A.	15065
15	В	2	15	U	Plain	0	80%	10%-80%	N.A.	4035
16	В	2	15	U	Plain	0	80%	10%-80%	N.A.	4684
17	В	4	15	U	Plain	0	100%	10%-80%	N.A.	11415
18	В	4	15	U	Plain	0	100%	10%-80%	N.A.	15949
19	А	2	5	R	Long Seam	0	100%	10%-80%	C.L.	32282
20	А	2	5	R	Long Seam	0	100%	10%-80%	C.L.	24919
21	Α	2	5	R	Girth Weld	0	100%	10%-80%	2" Offset	66871
22A	Α	4	10	R	Girth Weld	0	100%	10%-80%	2" Offset	66429
23	В	4	10	R	Girth Weld	0	100%	10%-80%	2" Offset	12722
24	В	4	10	R	Girth Weld	0	100%	10%-80%	2" Offset	16278
25	A	2	15	U	Girth Weld	0	100%	10%-80%	C.L.	19063
26	A	4	10	R	Metal Loss	0	100%	10%-80%	C.L.	40832
27	A	2	15	U	Girth Weld	0	100%	10%-80%	2" Offset	18633
28	A	2	15	U	Girth Weld	0	100%	10%-80%	2" Offset	16107
29	A	4	15	U	Girth Weld	0	100%	10%-80%	2" Offset	14400
30	A	4	10	R	Metal Loss	0	100%	10%-80%	C.L.	31179
31	В	2	15	<u> </u>	Girth Weld	0	100%	10%-80%	2" Offset	9890
32	В	2	15	U	Girth Weld	0	100%	10%-80%	2" Offset	9506
33	В	4	15	<u> </u>	Girth Weld	0	100%	10%-80%	2" Offset	9386
34	В	4	15	0	Girth Weld	0	100%	10%-80%	2 Offset	9871
35	В	4	15	0	Girth Weld	0	100%	10%-80%	C.L.	19959
30		4	15	P	Motal Loss	0	100%	10%-00%	C.L.	10000
38	Δ	4	15		Metal Loss	0	100%	10%-80%	C.L.	32963
30	B	4	5	R	Metal Loss	0	100%	10%-80%	Offset	7559
40	B	4	15	U U	Metal Loss	0	100%	10%-80%	Offset	6504
41	C	2	5	R	Plain	0	100%	10%-80%	NA	69099
42	č	4	10	R	Plain	0	100%	10%-80%	N.A.	69393
43	c	2	7.5	R	Plain	0	100%	10%-80%	N.A.	30604
44	c	8	7.5	R	Plain	0	100%	10%-80%	N.A.	54036
45	c	8	7.5	R	Plain	40%	100%	10%-80%	N.A.	58532
46	С	12	5	R	Plain	0	100%	10%-80%	N.A.	125525
47	С	8	7.5	R	Plain	80%	100%	10%-80%	N.A.	61865
48	С	2	15	U	Plain	0	100%	10%-80%	N.A.	23482
49	С	2	10	R	Plain	0	100%	10%-80%	N.A.	30604
50	С	2	15	U	Plain	40%	100%	10%-80%	N.A.	16600
51	С	2	15	U	Plain	80%	100%	10%-80%	N.A.	12131
52	С	4	15	U	Plain	0	80%	10%-80%	N.A.	9226
53	С	12	20	U	Plain	40%	80%	10%-80%	N.A.	18636
54	С	12	15	U	Plain	0	100%	10%-80%	N.A.	47702
55	С	12	20	U	Plain	80%	80%	10%-80%	N.A.	21018
56	С	4	20	U	Plain	0	100%	10%-80%	N.A.	15473
57	С	12	20	U	Plain	0	80%	10%-80%	N.A.	14091
58	С	2	15	U	Girth Weld	0%	100%	10%-80%	1.25" offset	4815
59	С	12	20	U	Girth Weld	0%	80%	10%-80%	C/L	6126
60	С	2	7.5	R	Girth Weld	0%	100%	10%-80%	0.75" offset	32580
61	С	8	7.5	R	Girth Weld	0%	100%	10%-80%	1.5" offset	33451
62	С	12	20	U	Plain	80%	80%	10%-80%	NA	12861

 Table 4: Test Matrix and Result Summary for Dent Fatigue Tests

Final Report DTPH56-08-T-000011

Project WP#339: Structural Significance of Mechanical Damage

Appendix B—Testing on Dent+Gouge Defects (Task 2 and 5)

Material characterization of the second vintage pipe is performed by GDF SUEZ. This work includes the full material characterization of this vintage pipe:

- Chemical Composition
- Hardness (Base Material, Weld Material, HAZ)
- Microstructure
- J Curves
- Machined round bar tensile tests
- Effects of pre-strain on toughness
- Machined sub-size flat specimens
- Charpy V notch toughness
- Kinematic hardening behavior

The testing program for Dent +Gouge defects is being performed by GDF SUEZ, with the defects being introduced using the Pipe Aggression Rig. The work completed to date has included testing on modern steel with five different types of Dent+Gouge defects created using both highly dynamic aggression (defect Types 1.1.1b, 1.2.1b, and 2.1.1 in the table below) and a slower aggression mode where the gouge is shallower and the dent more severe than the dynamic aggression conditions (defect Types 1.3.1 and 2.2.1) (Table 5). Each defect type created is then subjected to a series of detailed material characterization tests and burst and fatigue testing, with the burst and fatigue test being highly instrumented to provide detailed and comprehensive measurement data for the development of the improved severity assessment models.

rable 5. Dent and Obuge tests matrix									
			DOT						
Pipe number	Pipe	1 (modern steel	X52)	Pipe 2 (mode	ern steel X65)	Pipe 3DG (vintage steel)			
Defect type	Type 1	e 1 Type 2 Type 3 Type 1 or 2 Type 2 or 3		Type 1	Type 2				
Defect 1: Detailed characterization	Defect 1.1.1	Defect 1.2.1	Defect 1.3.1	Defect 2.1.1	Defect 2.2.1	Defect 3DG.1.1	Defect 3DG.2.1		
Defect 2: Burst test	Defect 1.1.2	Defect 1.2.2	Defect 1.3.2	Defect 2.1.2	Defect 2.2.2	Defect 3DG.1.2	Defect 3DG.2.2		
Defect 3: Delayed failure	Defect 1.1.3	Defect 1.2.3	Defect 1.3.3	Defect 2.1.3	Defect 2.2.3	Defect 3DG.1.3	Defect 3DG.2.3		
	Completed Tests								

Table 5: Dent and Gouge tests matrix

Vintage Pipe Tests not completed

Data collected to date on the burst and fatigue models created have been communicated to the full project team and the modeling SMEs working on the related mechanical damage modeling projects.

Tables 6 and 7 respectively summarize results of burst and fatigue tests on modern pipes 1 and 2 that were created on pressurized pipes.

Pipe	Defect	Type of	Dent	Pressure	Burst	Failure mode
number	number	mechanical	depth	during	pressure	
		aggression for	without	defect	(bar)	
		defect creation	pressure	creation		
			(%)	(bar)		
	Defect	Highly Dynamic	1,6	85	133	Ductile rupture in the
Pipe 1	1.1.2	aggression				pipe body
	Defect	Highly Dynamic	2,6	85	110	Ductile rupture in
	1.2.2	aggression				defect
	Defect	Slower dynamic	5,9	30	131	Ductile rupture
	1.3.2	aggression				propagation from
						defect
Pipe 2	Defect	Highly Dynamic	1,6	85	185	Ductile rupture
	2.1.2	aggression				propagation from
						defect
	Defect	Slower dynamic	5,2	20	194	Ductile rupture
	2.2.2	aggression				propagation from
						defect

Table 6: Results of burst tests on modern pipes

 Table 7: Results of fatigue tests on modern pipes

Pipe	Defect	Type of	Dent	Pressure	Fatigue	Number	Failure
number	number	mechanical	depth	during	amplitude	of	mode
		aggression for	without	defect	Pmin-Pmax	cycles	
		defect creation	pressure	creation	(bar)	at	
			(%)	(bar)		failure	
	Defect	Highly Dynamic	1,6	85	45 - 85	10.869	Leak in
Pipe 1	1.1.3	aggression					defect
X52	Defect	Highly Dynamic	2,6	85	45 - 85	5.200	Leak in
grade	1.2.3	aggression					defect
	Defect	Slower dynamic	5,9	30	53 - 93	20.494	Leak in
	1.3.3	aggression					defect
Pipe 2	Defect	Highly Dynamic	1,6	85	88 - 128	17.700	Leak in
X70	2.1.3	aggression					defect
grade	Defect	Slower dynamic	5,2	20	20 - 60	2.007	Leak in
	2.2.3	aggression					defect

Other main results of this study include:

- Defects created by highly dynamic aggression and by slower dynamic aggression are very different :
 - Highly dynamic aggression introduces at the gouge bottom hard layers associated with micro-cracks (Figure 1). The first hard layer at the gouge surface contains tooth steel whereas the second hard layer below is the pipe steel that underwent straining and thermal treatment due to heating during aggression.

Figure 1: Hard layers and micro-cracks at the gouge surface in a defect created by highly dynamic aggression

• Defects from slower dynamic aggression do not exhibit very hard layers and micro-cracks at the gouge surface as seen in Figure 2 below.

Figure 2: Microstructure at the gouge surface of a defect created by slower dynamic aggression

• Defects created by slower dynamic aggression with **worn teeth** and **lower internal pressure** lead to deeper dents. As a consequence, during pressure increase, dent pop-up and bulging is significant for these defects as shown in Figure 3 below.

Final Report DTPH56-08-T-000011 Project WP#339: Structural Significance of Mechanical Damage

Figure 3: Dent pop-up followed by significant bulging for pressure increase between 30 bar and 50 bar

• Dent bulging has a very significant impact on the remaining defect fatigue life time. The dent pops up and bulges above the dent creation pressure. If the defect is submitted to pressure swings above the dent pop-up / bulging pressure range, that means at high mean pressure, the remaining fatigue life is significant (20.494 cycles for defect 1.3.3, see Table 3 above). But if the same type of defect is submitted to a lower mean pressure in the pressure range of dent pop-up / bulging, the dent fatigue lifetime is reduced by one order of magnitude (2.007 cycles for defect 2.2.3, see Table 3 above). So, fatigue loading in the bulging pressure range, or just above the indentation pressure, may significantly reduce the expected fatigue life of the dent and gouge defects. These results should be confirmed on a larger sample of steel grades and dent shapes.